
Adhocracy Documentation
Release 2.0dev

Friedrich Lindenberg

September 13, 2012

CONTENTS

1 Development documentation 3
1.1 Architecture . 3
1.2 Internal API Documentation . 8
1.3 Update translations . 11
1.4 Add and run tests . 13

2 REST interface (outdated) 15
2.1 REST API Conventions . 15
2.2 REST Resources . 16

3 Indices and tables 31

i

ii

Adhocracy Documentation, Release 2.0dev

Adhocracy is a web-based platform that allows disperse groups to engage in a constructive process to draft proposals
which will then represent the group’s opinions and eventually its decisions regarding a given subject.

Contents:

CONTENTS 1

Adhocracy Documentation, Release 2.0dev

2 CONTENTS

CHAPTER

ONE

DEVELOPMENT DOCUMENTATION

1.1 Architecture

1.1.1 Database and model classes

Overview

We have 4 top level content classes user work with:

page.Page When the user creates a Norm (respectively Paper, or german “Papier”) through the web interface, he is
internally creating a Page with the page.Page.function set to page.Page.NORM. The text of the page
is saved in Text objects in page.Page.texts, that may have different variants.

Page is a subclass of delegateable.Delegateable.

proposal.Proposal The actual text of the proposal is saved as a Page object with the Page.function
page.Page.DESCRIPTIION in an attribute page.Page.description.

In a Page a user can propose changes to a Page (Norm). These are saved as selection.Selection objects
(see below).

Proposal is a subclass of delegateable.Delegateable.

milestone.Milestone A Milestone is used to represent a date or a deadline. Each Delegtable have a relation to
one Milestone.

comment.Comment Comments can be created for delegateable.Delegateable objects. The refer-
ence to the Delegateable is available as comment.Comment.topic. Each comment is associated
with a poll.Poll to rate content. If it is an answer to another Comment this is referenced with
comment.Comment.reply_id. The text of an comment is stored as a revision.Revision. If a
comment is edited, a new Revision is created. Revisions have similar function for Comments like Texts have for
Pages.

Some of the more interesting models and support classes are:

selection.Selection A Selection is a “reference” object for the relation between Pages (Norms) and Proposals
and stores additional information, especially when the relation was created or removed.

text.Text Text objects are only used to save text for page.Page objects. See Page.

revision.Revision Store the text of a Comment. Similar to Text. See Comment.

poll.Poll A Poll is an object representing a particular poll process a :class:Comment, :class:Proposal or
:class:Page/Norm Single votes relate to the :class:Poll object.

3

Adhocracy Documentation, Release 2.0dev

vote.Vote A Vote is a single vote from a user. It knows about the user whose vote it is, and if it was a delegated
vote the useris of the delegatee that voted for the user.

delegation.Delegation Created when a user delegates the voting to an delegatee. It knows about the user who
(principal_id) delegated, who is the delegatee (agent_id) for which poll (scope_id - the id of the delegateable
object).

delegateable.Delegateable Base class for Pages and Proposals for which a user can delegate the voting.
Sqlalchemy’s joint table inheritance is used.

tally.Tally A Tally saves the linear history of the :class:Poll noting which vote occured and what is the sum
number of for/against/abstains.

watch.Watch Users can subscribe to content changes and will be notified depending settings in their preferences.
A Watch object is created in these cases.

meta.Indexable Mixin class for content that should be indexed in Solr. It defines only one method
meta.Indexable.to_index() that collects data from the models and will be uses automatically when
a model object participates in a transaction.

Almost all model classes have a classmethod .create() to create a new instance of the model and setup the neces-
sary data or relationships. Furthermore methods like .find() and .all() as convenient query method that support
limiting the query to the current model.instance.Instance or in-/exclude deleted model instances.

Diagrams

Tables

Updating the diagrams

To update the diagramms install graphviz and easy_install sqlalchemy_schemadisplay into the environment adhocracy
is installed in. Then run python /adhocracy/scripts/generate-db-diagrams.py. It will create the diagrams as GIF files.
Finally replace the GIF files in adhocracy/docs/development with the new versions.

Delegateables

A user can delegate his vote to another user for comment.Comment, proposal.Proposal and page.Page.
This functionality is enabled by inheriting from Delegateable

Inheritance is done with sqlalchemy’s joint table inheritance where the delegateable table is polymorphic on
delegateable.Delegateable.type

Page Models

The model class page.Page has 2 uses in adhocracy that are differentiated by the value of
page.Page.function.

• A Page represents a Norm if page.Page.function is page.Page.NORM. This is the primary usage of
Page.

• For every proposal.Proposal a page is created and available as
proposal.Proposal.description to manage the text and text versions of the proposal.
page.Page.function is page.Page.DESCRIPTION in this case.

Pages are delegateable and inherit from delegateable.Delegateable.

4 Chapter 1. Development documentation

http://www.graphviz.org/
http://pypi.python.org/pypi/sqlalchemy_schemadisplay/
http://www.sqlalchemy.org/docs/orm/inheritance.html#joined-table-inheritance

Adhocracy Documentation, Release 2.0dev

Figure 1.1: Diagram of the mapped tables

1.1. Architecture 5

Adhocracy Documentation, Release 2.0dev

Figure 1.2: Diagramm of all model classes

6 Chapter 1. Development documentation

Adhocracy Documentation, Release 2.0dev

Variants and Versions

The text of the Page is not saved in the page table but created as a text.Text object. A page can contain different
variants of the text, and for each variant an arbitrary number of versions, e.g.:

• initial text

– version 1

– version 2

– ...

• other text variant

– version 1

– version 2

– ...

• ...

Text variants are used for Norms. For the initial text, variant is set to text.Text.HEAD. This text variant is handled
special in the UI and labeled Status Quo in Norms. Other variants can be freely named. All text variants are listed in
Page.variants.

Each variant can have a arbitrary number of versions. The newest version of the text is called the head (not
to confuse with the default text variant Text.HEAD). You can get the newest version of a specific variant with
Page.variant_head(). The newest versions of all variants is available as Page.heads. A shortcut to ob-
tain the newest version of the HEAD variant is Page.head.

Text variants are not used for pages that are used as the description of proposal.Proposal objects
(proposal.Proposal.description).

The poll tally of a variant or all variant can be optained with Page.variant_tally() or
Page.variant_tallies()

Polls are set up per variant, not for the Page object.

Page Hierarchies

Page objects (that have the funciton Norm) can be organized in a tree stucture by setting another Page
(Norm) object as one of the Page.parents of the current page. Parents can be an arbitrary number of
delegateable.Delegateable objects, but only one, not already deleted Page with the Page.function
Page.NORM is allowed. Parents are taken into account when we compute a delegation graph.

The subpages of a page are available as Page.subpages.

Other functionality

Beside that Pages have functions and attributes to handle purging, deleting, renaming, Selections (Page (Norm) <->
Proposal relationships) and other things. See the api documentation for Page

1.1.2 Indexing/Searching

Indexing and searching is done with sql(alchemy) and solr. Indexing with solr is done asyncronously most of the time
while updates of the rdbm is done syncronously most of the time. The asyncronous indexing is done throug a rabbitmq
job queue.

1.1. Architecture 7

Adhocracy Documentation, Release 2.0dev

Types of search indexes

Beside rdbm intern indexes adhocracy maintains application specific indexes (that partly act as audit trails too):

• solr’ is used for full text and tag searches. It is an document oriented index. The index schema can be found in
‘adhocracy/solr/schema.xml

• new tally.Tally objects are created with every new or changed vote and provide the current total of votes.

Update application layer indexes

adhocracy implements an sqlalchemy Mapperextension with hooks.HookExtension that provides hook method
to sqlalchemy that will be called before and after insert, update and delete operations for every model instance that is
part of a commit. To determinate what to do it will inspect the model instance for fitting hook methods.

The asyncronous system roughly works like this:

• hooks defines a list of event hook methods names that are also used as event identi-
fiers (:const:.PREINSERT, :const:.PREDELETE, :const:.PREUPDATE, :const:.POSTINSERT,
:const:.POSTDELETE, :const:.POSTUPDATE)

• All model classes defined in adhocracy.models.refs.TYPES are patched by
init_queue_hooks(). A function that posts a message message to the job queue (_handle_event)
is patched in as all the method names listed above. The post to the job queue contains the the entity (model
class) and the event identifier.

• A number of callback functions is registered by adhocracy.lib.democracy.init_democracy()
with the help of register_queue_callback() in the hooks REGISTRY

• Everytime one of the patched models is inserted, updated, or deleted, a generic job is inserted into the jobqueue
that contains the changed model instance and the event identifier.

• The background thread (paster background <ini-file>) picks up the jobs and calls
handle_queue_message() which calls all registered callbacks.

To have indexing and searching working propperly you need:

• a working rabbitmq

• a working solr

• a running background process to process the jobs pushed into the rabbitmq job queue (paster background <ini-
file>)

Read the install documentation for setup information.

1.1.3 Authentication and Permissions

1.2 Internal API Documentation

Adhocracy does not have a public programming API. There is a plan to develop a common Kernel interface for Liquid
Democracy projects. Once such an API becomes available, Adhocracy will be modified to implement that API.

8 Chapter 1. Development documentation

Adhocracy Documentation, Release 2.0dev

1.2. Internal API Documentation 9

Adhocracy Documentation, Release 2.0dev

1.2.1 Core polling logic

1.2.2 Delegation management and traversal

1.2.3 Database models and helper classes

Badge

Comment

Delegateable

Delegation

Event

Group

Instance

Membership

Milestone

Openid

Page

Permission

Poll

Proposal

Revision

Selection

Tag

Tagging

Tally

Text

Twitter

User

Vote

Watch

1.2.4 Template Variables

Pylons provides a thread local variable pylons.tmpl_context that is available in templates a c. The following
variables are commonly or always available in templates:

10 Chapter 1. Development documentation

Adhocracy Documentation, Release 2.0dev

c.instance A adhocracy.model.Instance object or None. It is set by
adhocracy.lib.base.BaseController from a value determinated by
adhocracy.lib.instance.DescriminatorMiddleware from the host name.

c.user A adhocracy.model.User object or None if unauthenticated. It is set by
adhocracy.lib.base.BaseController from a value determinated by the repoze.who mid-
dleware.

c.active_global_nav A str naming the current active top navigation item. It is set to ‘instance’ in
adhocracy.lib.base.BaseController if the request is made to an instance and can be overridden
in any controller.

1.3 Update translations

1.3.1 Translations for contributors

We manage our translations in a Transifex project. If you want to change a translation you can go to the project page,
choose your language and click on the resource “Adhocracy”. You will get a menu where you can download the .po
file to edit it on your computer with an application like poedit (“Download for use”). After you translated the file you
can go to the menu and upload the file. From the menu you can also use the transifex online editor (Button: “ Translate
now”)

It would be nice to drop us a note before you start to translate, to adhocracy-dev@lists.liqd.net or info@liqd.net. You
can also contact us to set up a new language on transifex.

1.3.2 Translations for developers

Adhocracy uses Babel together with Transifex to manage translations. Both are preconfigured in setup.cfg and
.tx/config.

Preperations

CAUTION:: If you’re using the adhocracy.buildout (highly recommended) you need to use the --distribute op-
tion to bootstrap.py to work with the preconfigured babel commands. This document assumes that you installed
the buildout in a virtualenv “adhocracy”.

Install the transifex client on your system. Then add your username and password for transifex.net to ~/.transifexrc:

[https://www.transifex.net]
hostname = https://www.transifex.net
username = <your transifex username>
password = <your transifex password>
token =

Translation workflow

All .po and .pot files should go through transifex before they are committed. This might be annoying but unifies the
formatting and makes it easier to review commits.

1.3. Update translations 11

https://www.transifex.net/projects/p/adhocracy/
http://www.poedit.net/
mailto:adhocracy-dev@lists.liqd.net
mailto:info@liqd.net
http://babel.edgewall.org/
https://bitbucket.org/liqd/adhocracy.buildout
http://pypi.python.org/pypi/transifex-client

Adhocracy Documentation, Release 2.0dev

Extract new messages

1. Extract new messages with extract_messages. This will update
adhocracy/i18n/adhocracy.pot:

(adhocracy)/src/adhocracy$../../bin/adhocpy setup.py extract_messages

2. Push that to transifex:

(adhocracy)/src/adhocracy$ tx push --source

3. Pull all files from transifex:

(adhocracy)/src/adhocracy$ tx pull

If it skips languages the files on transifex are older than the files on your system. See Troubleshooting.

4. Commit adhocracy.pot:

(adhocracy)/src/adhocracy$ hg ci adhocracy/i18n/adhocracy.pot \
> -m ’i18n: extract new messages’

Update the translations

1. Go to the transifex project and use the the online translation editor to translate and continue with 4.

Or translate it locally. To do that make sure you have pulled the most recent translations from transifex:

$ (adhocracy)/src/adhocracy$ tx pull # pulls all languages or
$ (adhocracy)/src/adhocracy$ tx pull -l <language>

2. Edit the .po files for your language(s).

INFO:: The prefered way to edit .po files is to use an application like poedit. It will highlight untranslated
messages and messages that were created with fuzzy matching and will automatically update or remove markers
like , fuzzy and update the header of the .po file.

3. Push the translation to transifex:

(adhocracy)/src/adhocracy$ tx push -l <language>

4. Pull the translation back:

(adhocracy)/src/adhocracy$ tx pull -l <language>

5. Compile the catalogs with compile_catalog:

(adhocracy)/src/adhocracy$../../bin/adhocpy setup.py compile_catalog

This will also show you errors in the .po files and statistics about the translation.

6. Commit the .po and .mo files of the language(s) you translated, e.g.:

(adhocracy)/src/adhocracy$ hg ci adhocracy/i18n/de’ -m ’i18n: ...’

Troubleshooting

If tx skips the languages you want to pull from the server, the local file is most likely newer than the file on transifex.net.
You can add -d to the command to get debug output, e.g.:

12 Chapter 1. Development documentation

http://www.poedit.net/

Adhocracy Documentation, Release 2.0dev

tx -d pull -l de

Than you have to check which of the files to use. Copy the local file and pull the language (with -f /–force) from
transifex...:

(adhocracy)/src/adhocracy$ cd adhocracy/i18n/de/LC_MESSAGES
(adhocracy) .../de/LC_MESSAGES$ cp adhocracy.po local.po
(adhocracy) .../de/LC_MESSAGES$ tx pull -f -l de

..and compare them. A good tool to compare is podiff from the Python GetText Translation Toolkit (which you can
install from source of from their ubuntu ppa). It contains several other tools to work with po-files. You might have to
give the -r (relax) option to podiff.

(adhocracy) .../de/LC_MESSAGES$ podiff local.po adhocracy.po

(There is also another podiff package on pypi.)

Babel command

(adhocracy)/src/adhocracy$../../bin/adhocpy setup.py extract_messages Extract the
messages from the python files and templates into adhocracy/i18n/adhocracy.pot

(adhocracy)/src/adhocracy$../../adhocpy setup.py compile_catalog Compile the .po
files for all languages to .mo files.

The babel command update_catalog should not be used anymore. Use the tx client instead.

1.4 Add and run tests

Before every commit you have to run all tests. Every new feature has to have a good test coverage. You should use Test
Driven Develpment (http://en.wikipedia.org/wiki/Test-driven_development) and Acceptance Test Driven Develpment.
Acceptance Tests correspondence to user stories (http://en.wikipedia.org/wiki/User_story). They use TestBrowser
sessions and reside inside the functional tests directory.

1.4.1 Add a new test

‘‘Go to (adhocracy)/src/adhocracy/adhocracy/tests and add you test (http://pylonsbook.com/en/1.1/testing.html).

1.4.2 Run all tests

In an adhocracy.buildout you have bin/test. Alternatively you can call:

(adhocracy)$ bin/nosetests --with-pylons=src/adhocracy/test.ini src/adhocracy/adhocracy/tests‘‘

1.4.3 Run one test file

(adhocracy)/src/adhocracy/$../../bin/nosetest -s adhocracy.tests.test_module

The -s option enables stdout, so you can use pdb/ipdb statements in your code.

1.4. Add and run tests 13

https://launchpad.net/pyg3t
http://pypi.python.org/pypi/podiff
http://en.wikipedia.org/wiki/Test-driven_development
http://en.wikipedia.org/wiki/User_story
http://pylonsbook.com/en/1.1/testing.html
https://bitbucket.org/liqd/adhocracy.buildout

Adhocracy Documentation, Release 2.0dev

14 Chapter 1. Development documentation

CHAPTER

TWO

REST INTERFACE (OUTDATED)

Warning: This is the documentation for the REST interface. Unfortunately it is outdated and parts of the interface
may not work anymore.

Warning: This is the documentation for the REST interface. Unfortunately it is outdated and parts of the interface
may not work anymore.

2.1 REST API Conventions

Adhocracy provides a REST-inspired API for client applications to remotely gather or submit data or to synchronize
Adhocracy sign-ups and voting processes with other sites.

While at the moment only JSON and RSS is produced and only JSON is processed by the software, future support for
other formats, such as XML (i.e. StratML, EML) is planned.

2.1.1 Data Submission

All data submitted is expected to be either URL-encoded (for GET requests) or
application/x-www-form-urlencoded (i.e. formatted as an HTML form, for either POST and PUT
requests). Accept/Content-type based submission of JSON/XML data will be implemented in a later release.

A meta parameter called _method is evaluated for each request to fake a request method if needed. This is useful for
older HTTP libraries or JavaScript clients which cannot actually perform any of the more exotic HTTP methods, such
as PUT and DELETE.

2.1.2 Authentication and Security

Authentication can take place either via form-based cookie creation (POST login and password to
/perform_login) or via HTTP Basic authentication (i.e. via HTTP headers).

Please note that for any write action using a cookie-based session, the site will expect an additional request parameter,
_tok, containing a session ID. This is part of Adhocracy’s CSRF filter and it will not apply to requests made using
HTTP Basic authentication. Since the value of _tok is not returned by the API, it is recommended to use HTTP Basic
for any API applications.

OAuth-based authorization is planned for a future release and will allow for token-based access to specific resources
or operations.

15

Adhocracy Documentation, Release 2.0dev

2.1.3 Pagination

Many listings in Adhocracy are powered by a common pager system. Each pager has a specific prefix (e.g.
proposals_) and a set of request parameters that can be used to influence the pager:

• [prefix]_page: The page number to retrieve, i.e. page offset.

• [prefix]_count: Number of items to retrieve per page.

• [prefix]_sort: Sorting key. These are somewhat erratically numbered and need to be redone in the future.

• [prefix]_q (in some cases): A search query used to filter the items.

Warning: This is the documentation for the REST interface. Unfortunately it is outdated and parts of the interface
may not work anymore.

2.2 REST Resources

2.2.1 /instance - Group/Organization Instances

index

• List all existing and non-hidden instances.

• URL: http://[instance].adhocracy.cc/instance[.format]

• Method: GET

• Formats: html, json

• Authentication: no

• Pager prefix: instances_

create

• Create a new instance for a group or organization.

• URL: http://[instance].adhocracy.cc/instance[.format]

• Method: POST

• Formats: html, json

• Authentication: yes

• Parameters:

– key: A unique identifier for the instance. Short lower-case alpha-numeric text. This cannot be edited after
the instance creation.

– label: A title for the instance.

– description: Short description for the instance, e.g. a mission statement.

16 Chapter 2. REST interface (outdated)

Adhocracy Documentation, Release 2.0dev

show

• View an instance’s home page or base data

• URL: http://[instance].adhocracy.cc/instance/[key][.format]

• Method: GET

• Formats: html, json

• Authentication: no

• Note: If no instance subdomain has been specified, this will 302 to the actual instance.

update

• Update some of an instance’s properties.

• URL: http://[instance].adhocracy.cc/instance/[key][.format]

• Method: PUT

• Formats: html, json

• Authentication: yes

• Parameters:

– label: A title for the instance.

– description: Short description for the instance, e.g. a mission statement.

– required_majority: The percentage of voters required for the adoption of a proposal (e.g. 0.66 for
66%).

– activation_delay: Delay (in days) that a proposal needs to maintain a majority to be adopted.

– allow_adopt: Whether to allow adoption polls on proposals (bool).

– allow_delegate: Whether to enable delegated voting (bool).

– allow_index: Allow search engine indexing (via robots.txt, bool).

– hidden: Show instance in listings.

– default_group: Default group for newly joined members (one of: observer, advisor, voter,
supervisor).

delete

• Delete an instance and all contained entities.

• URL: http://[instance].adhocracy.cc/instance/[key][.format]

• Method: DELETE

• Formats: html, json

• Authentication: yes (requires global admin rights)

• Note: This will also delete all contained items, such as proposals, delegations, polls or comments.

2.2. REST Resources 17

Adhocracy Documentation, Release 2.0dev

activity

• Retrieve a list of the latest events relating to this instance.

• URL: http://[instance].adhocracy.cc/instance/[key]/activity[.format]

• Method: GET

• Formats: html, rss

• Authentication: no

• Pager prefix: events_

join

• Make the authenticated user a member of this Instance.

• URL: http://[instance].adhocracy.cc/instance/[key]/join[.format]

• Method: GET

• Formats: html

• Authentication: yes

• Note: Fails if the user is already a member of the instance.

leave

• Terminate the authenticated user’s membership in this Instance.

• URL: http://[instance].adhocracy.cc/instance/[key]/leave[.format]

• Method: POST

• Formats: html

• Authentication: yes

• Note: Fails if the user is not a member of the instance.

2.2.2 /user - User Management

index

• List all users with an active membership in the specified instance.

• URL: http://[instance].adhocracy.cc/user[.format]

• Method: GET

• Formats: html, json

• Authentication: no

• Pager prefix: users_

• Parameters:

– users_q: A search query to filter with.

– users_filter: Filter by membership group (only in an instance context).

18 Chapter 2. REST interface (outdated)

Adhocracy Documentation, Release 2.0dev

• Note: If no instance is specified, all registered users will be returned.

create

• Create a new user.

• URL: http://[instance].adhocracy.cc/user[.format]

• Method: POST

• Formats: html, json

• Authentication: no

• Parameters:

– user_name: A unique user name for the new user.

– email: An email, must be validated.

– password: A password, min. 3 characters.

– password_confirm: Must be identical to password.

• Note: Does not require an instance to be specified. If an instance is selected, the user will also become a member
of that instance.

show

• View an user’s home page and activity stream,

• URL: http://[instance].adhocracy.cc/user/[user_name][.format]

• Method: GET

• Formats: html, json, rss

• Authentication: no

• Note: Also available outside of instance contexts.

update

• Update the user’s profile and settings.

• URL: http://[instance].adhocracy.cc/user/[user_name][.format]

• Method: PUT

• Formats: html, json

• Authentication: yes (either to own user or with user management permissions)

• Parameters:

– display_name: Display name, i.e. the real name to be shown in the application.

– email: E-Mail address. Must be re-validated when changed.

– locale: A locale, currently: de_DE, en_US or fr_FR.

– password: A password, min. 3 characters.

– password_confirm: Must be identical to password.

2.2. REST Resources 19

Adhocracy Documentation, Release 2.0dev

– bio: A short bio, markdown-formatted.

– email_priority: Minimum priority level for E-Mail notifications to be sent (0-6).

– twitter_priority: Minimum priority level for Twitter direct message notifications to be sent (0-6).

delete

• Delete an user. Not implemented

votes

• Retrieve a list of the decisions that were made by this user.

• URL: http://[instance].adhocracy.cc/user/[user_name]/votes[.format]

• Method: GET

• Formats: html, json

• Authentication: no

• Pager prefix: decisions_

• Note: Does not include rating polls, limited to adoption polls.

delegations

• Retrieve a list of the delegations that were created by this user.

• URL: http://[instance].adhocracy.cc/user/[user_name]/delegations[.format]

• Method: GET

• Formats: html, json

• Authentication: no

• Pager prefix: delegations_ (‘‘json‘‘ view only)

• Note: In html, lists both incoming and outgoing delegations. When rendered as json, this only includes
outgoing delegations.

instances

• A list of all non-hidden instances in which the user is a member.

• URL: http://[instance].adhocracy.cc/user/[user_name]/instances[.format]

• Method: GET

• Formats: html, json

• Authentication: no

• Pager prefix: instances_

20 Chapter 2. REST interface (outdated)

Adhocracy Documentation, Release 2.0dev

proposals

• A list of all proposals that the user has introduced.

• URL: http://[instance].adhocracy.cc/user/[user_name]/proposals[.format]

• Method: GET

• Formats: html, json

• Authentication: no

• Pager prefix: proposals_

groupmod

• Modify a user’s membership in the current instance

• URL: http://[instance].adhocracy.cc/user/[user_name]/proposals[.format]

• Method: GET

• Formats: html

• Authentication: yes (requires instance admin privileges)

• Parameters:

– to_group: Target group (one of: observer, advisor, voter, supervisor).

kick

• Terminate a user’s membership in the current instance

• URL: http://[instance].adhocracy.cc/user/[user_name]/proposals[.format]

• Method: GET

• Formats: html

• Authentication: yes (requires instance admin privileges)

• Note: Since the user can re-join at any time, this is largely a symbolic action.

2.2.3 /proposal - Proposal drafting

index

• List all existing proposals in the given instance.

• URL: http://[instance].adhocracy.cc/proposal[.format]

• Method: GET

• Formats: html, json

• Authentication: no

• Pager prefix: proposals_

• Parameters:

– proposals_q: A search query to filter with.

2.2. REST Resources 21

Adhocracy Documentation, Release 2.0dev

– proposals_state: Filter by state (one of: draft, polling, adopted). Only available if adoption
polling is enabled in the selected instance.

create

• Create a new proposal.

• URL: http://[instance].adhocracy.cc/proposal[.format]

• Method: POST

• Formats: html, json

• Authentication: yes

• Parameters:

– label: A title for the proposal.

– text: Goals of the proposal.

– tags: Comma-separated or space-separated tag list to be applied to the proposal.

– alternative (multiple values): IDs of any proposals that should be marked as an alternative to this
proposal.

show

• View an proposals’s goal page

• URL: http://[instance].adhocracy.cc/proposal/[id][.format]

• Method: GET

• Formats: html, json

• Authentication: no

update

• Update some of a proposal’s properties.

• URL: http://[instance].adhocracy.cc/proposal/[id][.format]

• Method: PUT

• Formats: html, json

• Authentication: yes

• Parameters:

• label: A title for the proposal.

• alternative (multiple values): IDs of any proposals that should be marked as an alternative to this proposal.

• Note: The goal description and tag list are edited separately.

22 Chapter 2. REST interface (outdated)

Adhocracy Documentation, Release 2.0dev

delete

• Delete a proposal and any contained entities.

• URL: http://[instance].adhocracy.cc/proposal/[id][.format]

• Method: DELETE

• Formats: html, json

• Authentication: yes (requires instance admin rights)

• Note: This will also delete all contained items, such as comments and delegations.

delegations

• Retrieve a list of the delegations that exist regarding this proposal.

• URL: http://[instance].adhocracy.cc/proposal/[id]/delegations[.format]

• Method: GET

• Formats: html, json

• Authentication: no

• Pager prefix: delegations_

canonicals

• Retrieve a list of canonical comments regarding the proposal. Canonical comments are listed as “provisions” in
the UI.

• URL: http://[instance].adhocracy.cc/proposal/[id]/delegations[.format]

• Method: GET

• Formats: html, json

• Authentication: no

• Note: No pager.

alternatives

• Retrieve a list of the alternatives that exist regarding this proposal.

• URL: http://[instance].adhocracy.cc/proposal/[id]/alternatives[.format]

• Method: GET

• Formats: html, json

• Authentication: no

• Pager prefix: proposals_

2.2. REST Resources 23

Adhocracy Documentation, Release 2.0dev

activity

• Retrieve a list of events within the scope of the given proposal.

• URL: http://[instance].adhocracy.cc/proposal/[id]/activity[.format]

• Method: GET

• Formats: html, rss

• Authentication: no

• Pager prefix: events_

adopt

• Trigger an adoption poll regarding this proposal.

• URL: http://[instance].adhocracy.cc/proposal/[id]/adopt[.format]

• Method: POST

• Formats: html

• Authentication: yes

• Note: Requires at least one canonical comment. Adoption polls must be enabled on the instance level.

tag

• Apply an additional tag to a proposal (or support an existing tag).

• URL: http://[instance].adhocracy.cc/proposal/[id]/tag[.format]

• Method: GET

• Formats: html

• Authentication: yes

• Parameters:

– text: Comma-separated or space-separated tag list to be applied to the proposal.

untag

• Remove a tag association (tagging) from a proposal.

• URL: http://[instance].adhocracy.cc/proposal/[id]/untag[.format]

• Method: GET

• Formats: html

• Authentication: yes

• Parameters:

– tagging: ID of the tagging association to be removed.

• Note: Only taggings created by the user can be removed.

24 Chapter 2. REST interface (outdated)

Adhocracy Documentation, Release 2.0dev

2.2.4 /poll - Poll data and voting

show

• View a poll, listing the current decisions and offering a chance to vote.

• URL: http://[instance].adhocracy.cc/poll/[id][.format]

• Method: GET

• Formats: html, json

• Authentication: no

delete

• End a poll and close voting.

• URL: http://[instance].adhocracy.cc/poll/[id][.format]

• Method: DELETE

• Formats: html, json

• Authentication: yes

• Note: This will only work for adoption polls, rating polls cannot be terminated.

votes

• Retrieve a list of the decisions that were made regarding this poll.

• URL: http://[instance].adhocracy.cc/poll/[id]/votes[.format]

• Method: GET

• Formats: html, json

• Authentication: no

• Pager prefix: decisions_

• Parameters:

– result: Filter for a specific decision, i.e. -1 (No), 1 (Yes), 0 (Abstained).

rate

• Vote in the poll via rating.

• URL: http://[instance].adhocracy.cc/poll/[id]/rate[.format]

• Method: POST

• Formats: html, json

• Authentication: yes

• Note: This implements relative voting, i.e. if a user has previously voted -1 and now votes 1, the result will
be 0 (a relative change). Used for comment up-/downvoting. Unlike vote, this will also trigger an automated
tallying of the poll. It is thus slower, especially for large polls.

2.2. REST Resources 25

Adhocracy Documentation, Release 2.0dev

vote

• Vote in the poll.

• URL: http://[instance].adhocracy.cc/poll/[id]/vote[.format]

• Method: POST

• Formats: html, json

• Authentication: yes

• Note: This does not trigger tallying. Thus a subsequent call to show might yield an incorrect tally until a server
background job has run.

2.2.5 /comment - Commenting and comment history

index

• List all existing comments.

• URL: http://[instance].adhocracy.cc/comment[.format]

• Method: GET

• Formats: json

• Authentication: no

• Pager prefix: comments_

create

• Create a new comment within a specified context.

• URL: http://[instance].adhocracy.cc/comment[.format]

• Method: POST

• Formats: html, json

• Authentication: yes

• Parameters:

– topic: ID of the Delegateable to which this comment is associated.

– reply: A parent comment ID, if applicable.

– canonical (bool): Specify whether this is part of the implementation description of the proposal to
which it will be associated.

– text: The comment text, markdown-formatted.

– sentiment: General tendency of the comment, i.e. -1 for negative, 0 for neutral and 1 for a supporting
argument.

26 Chapter 2. REST interface (outdated)

Adhocracy Documentation, Release 2.0dev

show

• View a comment separated out of their context.

• URL: http://[instance].adhocracy.cc/comment/[id][.format]

• Method: GET

• Formats: html, json

• Authentication: no

update

• Create a new revision of the given comment.

• URL: http://[instance].adhocracy.cc/comment/[id][.format]

• Method: PUT

• Formats: html, json

• Authentication: yes

• Parameters:

– text: The comment text, markdown-formatted.

– sentiment: General tendency of the comment, i.e. -1 for negative, 0 for neutral and 1 for a supporting
argument.

delete

• Delete a comment.

• URL: http://[instance].adhocracy.cc/comment/[id][.format]

• Method: DELETE

• Formats: html, json

• Authentication: yes

• Note: Comments can only be deleted by non-admins if they have not yet been edited.

history

• List all revisions of the specified comment.

• URL: http://[instance].adhocracy.cc/comment/[id]/history[.format]

• Method: GET

• Formats: html, json

• Authentication: yes

• Pager prefix: revisions_

2.2. REST Resources 27

Adhocracy Documentation, Release 2.0dev

revert

• Revert to an earlier revision of the specified comment.

• URL: http://[instance].adhocracy.cc/comment/[id]/revert[.format]

• Method: GET

• Formats: html, json

• Authentication: yes

• Parameters:

– to: Revision ID to revert to.

• Note: This will actually create a new revision containing the specified revision’s text.

2.2.6 /delegation - Vote delegation management

index

• List all existing delegations (instance-wide).

• URL: http://[instance].adhocracy.cc/delegation[.format]

• Method: GET

• Formats: json, dot

• Authentication: no

• Pager prefix: delegations_

• Note: The dot format produces a graphviz file.

create

• Create a new delegation to a specified principal in a given scope.

• URL: http://[instance].adhocracy.cc/delegation[.format]

• Method: POST

• Formats: html, json

• Authentication: yes

• Parameters:

– scope: ID of the Delegateable which will be the delegation’s scope.

– agent: User name of the delegation recipient.

– replay: Whether or not to re-play all of the agents previous decisions within the scope.

show

• View the delegation.

• URL: http://[instance].adhocracy.cc/delegation/[id][.format]

• Method: GET

28 Chapter 2. REST interface (outdated)

Adhocracy Documentation, Release 2.0dev

• Formats: html, json

• Authentication: no

• Pager prefix: decisions_

• Note: For json this will return a tuple of the actual serialized delegation and a list of decisions.

delete

• Revoke a the delegation.

• URL: http://[instance].adhocracy.cc/delegation/[id][.format]

• Method: DELETE

• Formats: html, json

• Authentication: yes

• Note: Can only be performed by the delegation’s principal.

2.2. REST Resources 29

Adhocracy Documentation, Release 2.0dev

30 Chapter 2. REST interface (outdated)

CHAPTER

THREE

INDICES AND TABLES

• genindex

• modindex

• search

31

	Development documentation
	Architecture
	Internal API Documentation
	Update translations
	Add and run tests

	REST interface (outdated)
	REST API Conventions
	REST Resources

	Indices and tables

